Save Time and Money with Energy Modeling

Jonathan Spreeman
Trane Nebraska
jspreeman@trane.com

Market Trends & Dynamics

What happened in 2008?

- Buildings are longer term investments
- Sustainability What does that mean?
 - **Engineers** LEED, Green, ASHRAE
 - Contractors Commissioning agent, VAV boxes in shrink wrap, multiple dumpsters
 - Owners How much does it cost and what do I get for it?
- Giving our customers the ability to adapt to global changes and mitigate future risk.

Maximize Lifetime System Performance

Agenda

- What software is available
- What information is needed to complete a model
- 10 Simple Rules of Modeling
- How do standards tie into modeling
- What can be modeled today?
- Real World Examples
 - Chiller change out
 - Free cooling vs. Airside economizers
 - Bid Comparison
 - Live Example

Always, Always.... Remember the meter is on the building

What Software is Available

- DOE 2
- Visual DOE
- E-Quest
- Carrier HAP
- Trane TRACE 700
- Trane System Analyzer
- Do not use bin methods misleading and not accurate

Four phases of Modeling

Confidential and Proprietary

Four phases of Modeling

Modeling Functionality Load Design

- Define building envelope
 - Weather profile
 - Construction types wall, roof, glass, etc
 - Loads people, lights, miscellaneous
 - Airflows
 cooling, heating, ventilation, infiltration, etc.

Modeling Functionality Load Design

- Select Features
 - Import weather files reduced and 8760
 - Templates
 apply common data to multiple rooms
 - Schedules
 apply common or custom schedules
 - ASHRAE Standard 62.1-2004
 Ventilation Rate Procedure
 - Daylighting controls define different control strategies
 - GBXML import capability import CAD drawings into TRACE 700

110360

Belarus (BLR) 268500 VIENNA,

MINSK

Phase 2: System Simulation

Modeling Functionality System Simulation

Translates heat gains/losses to equipment loads

More than 40 systems including:

- Variable-volume
 bypass, parallel, series, reheat, etc
- Constant-volume
 single zone, fan coil, WSHP, chilled beam
 variable-temperature, etc
- Heating only Radiation, unit heaters, ventilation and heating
- Induction
 Two-pipe and four-pipe
- Under Floor
 Displacement Vent

Locking

Alternative 1

System safegory

Variable Volume Constant Volume - Non-mining

System type

Constant Volume - Mixing Heating Only Induction

Create Systems - Selection

military)

System description North Wing per 1st FILAHU MZ

Create Systems

-conditioned

FA

→ VAV wsBaseboard He

Modeling Functionality System Simulation

- Select Features
 - Evaporative cooling
 - Variable refrigerant
 - Dedicated-outdoor air
 - Airside economizers
 - Optimum start/stop
 - Fan pressure optimization
 - ASHRAE Standard 62.1/CO₂ based demand-controlled ventilation (DCV)
 - Energy recovery
 - Supply-air temperature Reset

Phase 3: Plant/Equipment Simulation

Modeling Functionality Plant/Equipment Simulation

- Converts system loads to energy consumption
- Multiple equipment types:
 - Air/Water-cooled chillers
 - Air/Water-cooled unitary
 - Water/ground-source heat pumps
 - Boilers
 - Electric resistance heat
 - Gas-fired heat exchanger
- Equipment Library
 - Standard
 - ASHRAE Standard 90.1-2004
 - Custom

Modeling Functionality Plant/Equipment Simulation

Select Features

- Chiller Plant Wizard
 - Decoupled arrangement
 - Parallel/series
 - Variable-primary flow
 - Switchover control
- Cogeneration
- Thermal energy storage
- Direct-fired absorption
- Low-flow chilled water

Modeling Functionality Plant/Equipment Simulation

Select Features (continued)

- Free cooling
 - Plate & frame
 - Refrigerant migration
 - Strainer cycle
- Double-bundle heat recovery
- Cooling tower with VFD
- Chiller-tower optimization
- Domestic hot water
- Central and distributed geothermal

Phase 4: Economic Analysis

Modeling Functionality Economic Analysis

- Operation costs
- Custom utility rates
- Multiple alternatives
- Reports show:
 - Cash flow effect
 - Profit and loss effects
 - Payback period
 - Present worth of savings
 - Incremental return on the additional investment
- Not just HVAC

Economic Benefit

- Energy efficiency
- Proven software
 - ASHRAE 140 Compliant
 - ASHRAE 90.1-2004
 - Section 11.2
 - Section G2.2 (LEED Analysis)
- Tax advantage (Energy Policy Act of 2005)
- CEC Title 24

Reports

- Design reports
- Analysis reports
- Detailed reports

10 Simple Rules for Modeling

- 1. Garbage in Garbage Out
- 2. Garbage in Garbage Out
- 3. Garbage in Garbage Out
- 4. Understand your inputs
- 5. If it's to good to be true; it's probably not true
 - 1. Rules of thumb
- 6. Demystify the black box understand the output
- 7. Not every field needs to be filled in

10 Simple Rules for Modeling

- 1. Garbage in Garbage Out
- 2. Garbage in Garbage Out
- 3. Garbage in Garbage Out
- 4. Understand your inputs
- 5. If it's to good to be true; it's probably not true
 - 1. Rules of thumb
- 6. Demystify the black box understand the output
- 7. Not every field needs to be filled in
- 8. Don't be afraid to try something new
- 9. Call for help
- 10.KISS Keep it super simple

What can energy analysis be used for

- Comparisons between different airside system types
- Comparisons between different waterside system types
- Retrofit Project Qualification which is the best way to go?
- Fast way to justify potential savings
- ASHRAE 90.1 if not using prescriptive path
- LEED Projects
- Utility rebate programs
- Bid Reviews

Code Compliance – ASHRAE, IECC

ASHRAE 90.1

- Fan Pressure optimization
- Economizers
- Various energy recovery modeling capabilities
- Min. Equipment Efficiency in Libraries
- Building envelope requirements

ASHRAE 62.1

- Outdoor Air Calculations
- CO₂ demand control Ventilation

LEED

LEED reports

Exhaust-Air Energy Recovery

Exhaust-Air Energy Recovery

Benefits

- Reduces cooling, dehumidification, heating, and even humidification energy
- Allows equipment downsizing

Drawbacks

- Increases fan energy
- Requires exhaust air to be routed back to air handling unit

optimized control strategiesOptimal Start

optimized control strategies Fan-Pressure Optimization

optimized control strategies Supply-Air-Temperature Reset

Benefits

- Decreases compressor energy
- More hours when economizer provides all necessary cooling (compressors shut off)
- Decreases reheat energy

Drawbacks

- Increases fan energy
- Raises humidity levels in zones

Condenser Water Control

Cooling Tower Optimization

Examples of how to use Modleing Software

- Chiller Replacement
 - Different building Types
- Dry Bulb vs. Enthalpy Economizers
 - Energy savings
 - Space conditions
- Live examples...

Example 1: Chiller Replacement

- 650 ton chiller
- High Efficiency vs. ASHRAE 90.1 compliant
- Equivalent Full Load hours 2,500
- Electrical Consumption \$0.055/ kW-h
- Electrical Demand \$8.00 kW
- 85% Ratchet Rate on demand

Example 1: Chiller Replacement

- 0.576 kW/ton-0.525 kW/ton = **0.051 kW/ton**
- 0.051 kW/ton * 650 tons = 33.15 kW
- 2,500 EFLH * 33.15kW = 82,875 kW-h
- Electrical Consumption Charges
 - 82,875 kW-h * 0.055 \$/kW-h = \$4,558
- Electrical Demand Charges
 - Summer → 33.15 kW * 8 \$/kW * 4 months = \$1,061
 - Winter \rightarrow 33.15kW * .85 * 8 \$/kW * 8 months = **\$1,803**
- Total savings per year = \$7,422

Hospital - Total savings per year = \$7,335

Energy Cost Budget / PRM Summary

By TRANE

Project Nam	e:					Date:	October 1	5,2012
City: North C	Central		Weather Data	: Omaha	a, Nebraska			
column of the	e base case is actual	or the "Proposed/Base %" ly the percentage of the	,	* Alt-1			Alt-2	
	consumption. e base alternative fo	rthe ECB study.		Propose Base %	ed Peak kBtuh		Propose / Base %	ed Peak kBtuh
Space Heat	ting	Electricity	0.0	0	0	0.0	100	0
Space Coo	ling	Electricity	2,364.2	84	1,187	2,593.4	110	1,302
Heat Rejec	tion	Electricity	449.5	16	162	455.2	101	164
Total Build	ling Consumption		2,813.7			3,048.6		
				Alt-1			Alt-2	
Total		ours heating load not met ours cooling load not met		0 0			0 0	
				Alt-1			Alt-2	
			Energy 10^6 Btu/y		st/yr \$/yr	Energy 10^6 Btu/		st/yr \$/yr
Electricity			2,813.7		86,201	3,048.6	!	93,536
Total			2,814		86,201	3,049		93,536

K-12 School - Total savings per year = \$3,940

Energy Cost Budget / PRM Summary

By TRANE

		l						
Project Name:						Date:	October 1	15,2012
City: North Centr	ʻal		Weather Dat	ta: Omaha	a, Nebraska	<u>'</u>		
		or the "Proposed/Base %" ly the percentage of the		* Alt-1			Alt-2	
total energy cons * Denotes the ba	sumption.		Energy 10^6 Btu/yr	Propose / Base %	ed Peak kBtuh	Energy 10^6 Btu/yr	Propose / Base · %	ed Peak kBtuh
Space Heating		Electricity	0.0	0	0	0.0	0	0
Space Cooling		Electricity	563.1	74	1,176	617.4	110	1,291
Heat Rejection		Electricity	200.1	26	166	202.7	101	168
Total Building	Consumption		763.2			820.1		
				* Alt-1			Alt-2	
Total	Number of ho Number of ho	ours heating load not met ours cooling load not met		0 0			0 0	
				* Alt-1			Alt-2	
			Energy 10^6 Btu/		st/yr \$/yr	Energy 10^6 Btu		st/yr \$/yr
Electricity			763.2		47,720	820.1		51,660
Total			763		47,720	820		51,660

University - Total savings per year = \$4,844

Energy Cost Budget / PRM Summary

By TRANE

Electricity			1,413.6 1,414		0,008 0,008	1,518.2		64,852 64,852
Flantsiak			Energy 10^6 Btu/		/yr	Energy 10^6 Btu/	yr	st/yr \$/yr
				* Alt-1			Alt-2	
Total		ours heating load not met ours cooling load not met		0 0			0 0	
				* Alt-1			Alt-2	
Total Buildin	g Consumption		1,413.6			1,518.2		
Heat Rejectio	n	Electricity	371.4	26	163	376.2	101	165
Space Coolin	g	Electricity	1,042.2	74	1,158	1,142.0	110	1,27
Space Heatin	g	Electricity	0.0	0	0	0.0	100	0
column of the b total energy cor	ase case is actual	ly the percentage of the	Energy 10^6 Btu/yr	Proposed / Base	Peak kBtuh	Energy 10^6 Btu/yr	Propose / Base	d Peak kBtuh
		orthe "Proposed/Base %"		* Alt-1			Alt-2	
City: North Cer	itral		Weather Da	ta: Omaha, I	Nebraska			
Project Name:						Date:	October 1	5,2012

Example 2: Free Cooling & Economizers

- Base Air-cooled chiller with AHU's
- Dry Cooler Glycol solution
- Dry Bulb Economizer on point 55F
- Enthalpy Economizer comparative on point

Example 2: Free Cooling & Economizers

		- Maxi	num-			-		- Numb	er of Ho	urs at ea	ach Pero	entage	Range			
System/Room Description	%Rh	Мо	Hr	Day	>70%	70-66	66-62	62-58	58-54	54-50	50-46	46-42	42-38	38-34	34-30	< 30 %
System - 001																
VV1-R1 N	78	7	13	Mon	464	298	437	437	503	653	545	1,634	439	109	631	2,610
W1-R2 E	71	- 7	9	Dsgn	15	569	256	1,001	434	627	328	1,054	494	237	279	3,466
W1-R3 S	71	7	9	Dsgn	15	569	256	1,001	434	627	328	1,054	494	237	279	3,466
W1-R4W	61	- 7	23	Mon	0	0	0	633	796	744	538	782	702	542	430	3,593
VV1-R5 Int	61	7	23	Mon	0	0	0	425	927	756	530	837	649	584	391	3,661

		- Maxir	num-			-		- Numbe	er of Ho	urs at ea	ach Pero	entagel	Range			
System/Room Description	%Rh	Мо	Hr	Day	>70%	70-66	66-62	62-58	58-54	54-50	50-46	46-42	42-38	38-34	3430	<30 %
System - 001																
W1-R1 N	100	12	13	Mon	584	1,176	370	25	606	1,347	666	1,283	590	730	700	68
W1-R2 E	100	12	15	Mon	372	933	443	280	1,095	791	576	1,135	450	572	461	1,65
W1-R3 S	100	12	15	Mon	372	933	443	280	1,095	791	576	1,135	450	572	461	1,65
VM-R4W	61	7	17	Dsgn	0	0	0	355	1,154	1,001	734	1,013	863	602	363	2,67
VV1-R5 Int	60	7	17	Dsgn	0	0	0	184	1,085	939	667	974	821	581	532	2,97

		Maxir	num-	-		-		Numbe	er of Ho	urs at ea	ach Per	entage	Range			
System/Room Description	%Rh	Мо	Hr	Day	>70%	70-66	66-62	62-58	58-54	54-50	50-46	46-42	42-38	38-34	34-30	<30 %
System - 001																
V/1-R1 N	100	12	13	Mon	536	697	490	165	539	1,109	742	1,082	616	401	1,071	1,312
W1-R2 E	100	12	15	Mon	296	554	429	462	992	817	482	1,011	571	332	422	2,392
W1-R3 S	100	12	15	Mon	296	554	429	462	992	817	482	1,011	571	332	422	2,392
W1-R4W	61	7	17	Dsgn	0	0	0	355	1,098	933	661	951	757	529	364	3,112
VV1-R5 Int	60	7	17	Dsgn	0	0	0	184	1,046	880	575	942	708	487	533	3,405

Example 2: Free Cooling & Economizers

Energy Cost Budget / PRM Summary

					Ву	TRANE								
Project Name:						Date: Od	tober 1	5,2012]					
City:			Weather Data	a: Lincoln	n, Nebraska	']					
	ase case is actual	ior the "Proposed/Base %" Ily the percentage of the	1	Propose	ed	Pı	ry coo	ed	1	ropose	ed	1	Propose	ed
* Denotes the ba	ase alternative fo	r the ECB study.	Energy / 10^6 Btu/yr ?	Base %	Peak kBtuh	Energy / E 10^6 Btu/yr %	Base	Peak kBtuh	Energy / 10^6 Btu/yr %	Base √	Peak kBtuh	Energy / 10^6 Btu/yr 3	Base %	Peak kBtuh
Lighting- Con	ditioned	Electricity	754.9	52	86	754.9	100	86	754.9	100	86	754.9	100	86
Space Heating	3	Electricity	11.0	1	5	11.0	100	5	1.8	16	2	1.8	16	2
		Gas	351.9	24	983	351.9	100	983	16.8	5	164	16.8	5	164
Space Cooling	g	Electricity	238.6	16	350	227.5	95	348	219.3	92	216	190.9	80	216
Pumps		Electricity	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0
Heat Rejection	n	Electricity	26.5	2	33	26.2	99	35	23.3	88	19	20.1 76		19
Fans - Conditi	ioned	Electricity	27.1	2	4	27.1	100	4	26.1	96	4	26.1 96		4
Receptacles-	Conditioned	Electricity	37.6	3	11	37.6	100	11	37.6	100	11	37.6	100	11
Total Building	g Consumption	l	1,447.6			1,436.3			1,079.7			1,048.1		
			* Alt-1 Base	e no fre	e cooling	Alt-2 D	ry cool	ler	Alt-3 Dry Bu	ıld 55F c	on point	Alt-4 Enthal	py Com	parative
Total		ours heating load not met ours cooling load not met		1,296 354			,296 354			140 75			140 28	
			* Alt-1 Base	e no fre	e cooling	Alt-2 D	ry cool	ler	Alt-3 Dry Bu	ıld 55F c	on point	Alt-4 Enthal	py Com	parative
			Energy 10^6 Btu/y		st/yr \$/yr	Energy 10^6 Btu/yr	Cos	st/yr \$/yr	Energy 10^6 Btu/yr		st/yr \$/yr	Energy 10^6 Btu/yr		st/yr \$/yr
Electricity			1,095.6		31,386	1,084.3	;	31,071	1,062.9	:	27,010	1,031.3	:	26,399
Gas			351.9		2,816	351.9		2,816	16.8		134	16.8		134
Total			1,448		34,202	1,436		33,887	1,080		27,144	1,048		26,534

Example 3: Bid Review Water Pressure Drop

Base Chiller

I .	1	1	
	Efficiency	kW/ton	0.565
Evaporato	r:		
	GPM		4500
	EWT	F	56
	LWT	F	44
	P.D.	Ft./W.G.	24.1
	Tube Thickness		0.028
	Fouling Factor		0.0001
Condense	er:		
	GPM		6750
	EWT	F	94.7
	LWT	F	85
	P.D.	Ft./W.G.	33
	Tube Thickness		0.028
	Fouling Factor		0.00025

Confidential and Proprietary 4

Example 3: Bid Review Water Pressure Drop

			Base Chiller	Alt: 1	Alt: 2	Alt: 3
	Efficiency	kW/ton	0.565	0.565	0.561	0.557
Evaporate	or:					
	GPM		4500	4500	4500	4500
	EWT	F	56	56	56	56
	LWT	F	44	44	44	44
	P.D.	Ft./W.G.	24.1	8.16	8.16	8.16
	Tube Thickness		0.028	0.028	0.028	0.028
	Fouling Factor		0.0001	0.0001	0.0001	0.0001
Condense	er:					
	GPM		6750	6750	6750	6750
	EWT	F	94.7	94.7	94.7	94.7
	LWT	F	85	85	85	85
	P.D.	Ft./W.G.	33	10.46	10.46	8.91
	Tube Thickness		0.028	0.028	0.028	0.028
	Fouling Factor		0.00025	0.00025	0.00025	0.00025

Example 3: Comparison vs. Base bid

Energy Cost Budget / PRM Summary

By Trane

Project Name:		Date: January 30, 2008
City: North East	Weather Data: Washington, D.C.	

Note: The percentage displayed for the column of the base case is actually the		Base	e Chil	ler _		Alt: 1		_ A	lt: 2			Alt: 3	
total energy consumption. * Denotes the base alternative for the	ECB study.	Energy 10^6 Btu/yr	Proposed / Base %	Peak kBtuh									
Space Heating	Electricity	2.5	0	2	2.5	100	2	2.5	100	2	2.5	100	2
	Gas	0.0	0	0	0.0	100	0	0.0	100	0	0.0	100	0
Space Cooling	Electricity	22,167.2	74	29,392	22,167.2	100	29,392	21,569.7	97	28,799	21,267.1	96	28,464
Pumps	Electricity	1,871.6	6	1,945	639.2	34	690	425.2	23	540	439.5	23	511
Heat Rejection	Electricity	5,963.4	20	4,095	5,963.4	100	4,095	5,942.9	100	4,084	5,932.5	99	4,078
Total Building Consumption		30,004.7			28,772.3			27,940.4			27,641.6		

Total	Number of hours heating load not met Number of hours cooling load not met	33		331	\$128	3,624 3	31	33	81
				\$	3109,54	48			
		Energy 10^6 Btu/yr	Cost/yr \$/yı	Energy 10^6 Btu/vr	Cost/yr \$/yr	Energy 10^6 Btu/yr	Cost/yr \$/yr	Energy 10^6 Btu/yr	Cost/yr \$/yr
Electricity		30,004.7	1,857,05	<u>\$67,807</u>	,789,798	27,940.4	1,748,057	27,641.6	1,728,982
Gas		0.0	1	0.0	1	0.0	1	0.0	1
Total		30,005	1,857,606	28,772	1,789,799	27,940	1,748,058	27,642	1,728,982

Economic Benefit

LEED® – A closer look...

Energy & Atmosphere Credit 1 Optimize Energy Performance

- 8 Criteria for an acceptable modeling tool
- Updated Energy Cost Budget & Performance Rating Method reports
- Automated building rotation for Performance Rating Method
- Automatic fan resizing for Energy Cost Budget & Performance Rating Method
- ASHRAE 90.1-2004 Library

Real Paybacks Require Real Analysis

Always, Always Remember ... The Meter is On The BUILDING

TRACE 700

System Analyzer

Chiller Plant Analyzer

Building Energy Analysis Tool

EnergyPlus

Total System Efficiency